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Topographic Hadley cells 

By S. A. CONDIET AND P. B. R H I N E S  
School of Oceanography WB-10, University of Washington, Seattle, WA 98195, USA 

(Received 7 July 1993 and in revised form 9 June) 

When a rotating fluid over sloping topography is heated from below and/or cooled 
from above, horizontal temperature gradients develop which drive convection cells 
aligned with isobaths. We refer to these cells as topographic Hadley celZs. Laboratory 
experiments reveal that sinking occurs in small cyclonic vortices situated in relatively 
shallow regions. This is balanced by slower upwelling in adjacent deeper regions. The 
cross-isobath motions which connect the upwelling and downwelling are accelerated 
by Coriolis forces, resulting in strong jets which follow isobathic contours. For anti- 
clockwise rotation, the surface jets keep the shallows to their left when looking in the 
direction of flow, which is opposite to both Kelvin and Rossby wave propagation. 
The width of the jets scales with the Rossby deformation radius and if this is much 
less than the width of the slope region then a number of parallel jets form. Motions 
on the deeper side of the jets where the flow is accelerating are adequately described 
by linear inviscid theory. However, the strong shears generated by this acceleration 
lead to baroclinic instability. The resulting cross-stream momentum fluxes broaden 
and flatten the velocity profile, allowing the flow on the shallow side of the jet to 
decelerate smoothly before sinking. Topographic Hadley cells are dynamically similar 
to terrestrial atmospheric Hadley cells and may also be relevant to the zonal jet 
motions observed on Jupiter and Saturn. It is also suggested that in coastal seas they 
may represent an important mode of heat (or salt) transfer where surface cooling (or 
evaporation) drives convection. 

1. Introduction 
If a fluid of varying depth is uniformly cooled from above, the coldest fluid will be 

produced in shallow regions owing to the smaller heat capacity per unit area. The flow 
responds to the cross-isobath temperature gradient by establishing convection cells, 
characterized by downwelling in shallows balanced by upwelling in deeper regions. 
In an inertial reference frame there is no along-isobath component. However, if the 
fluid is also rotating, the horizontal motions within the cell will be accelerated in 
the along-isobathic direction by Coriolis forces. This is illustrated schematically in 
figure 1. As relatively warm fluid nears the free surface and begins to move toward 
the shallows, it is accelerated to the right (anti-clockwise rotation), thus forming an 
along-isobath jet which keeps the shallows to its left. The bottom flow will similarly 
form a jet in the opposite direction, although this may be significantly weakened 
by dissipation in the bottom Ekman layer. Because of a close dynamical analogy 
between the formation of zonal jets over topography and the formation of the jet 
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FIGURE 1. Schematic representation of the convection cell. Without rotation the azimuthal velocity 
is zero and a single radially overturning cell covers the entire slope region. The addition of rotation 
causes the horizontal motions to accelerate in the azimuthal direction (normal to the page) and 
limits the width of the cell. 

\\J// 

I / / / / / /  Insulation Heating coil 

FIGURE 2. Experimental configurations for (u)  flows with an insulated perspex bottom and (b)  flows 
with a heated aluminium bottom. The bowls were spherical in shape with spherical radii of 22 cm 
and 30 cm for (a)  and 22 cm for (b ) .  The smaller bowls were typically filled to a depth of H = 7.5 
cm giving a free surface radius of r, = 17 cm, while for the larger bowl H = 11 cm and r,  = 23 cm. 

stream by the atmospheric Hadley cell, we refer to the convection cells as topographic 
HadEey cells. 

The convection cells can be readily produced in laboratory experiments by allowing 
water in a thermally insulated rotating bowl to cool at the free surface (figure 
2). In figure 3 the surface flow is visualized by a streak photograph of floating 
aluminium powder. It is characterized by at least two highly unstable clockwise 
jets, separated by rings of small cyclonic (anti-clockwise) vortices. The vortices form 
the downwelling component of the convection cells, carrying cooled surface water 
downward in spiralling motions to the bottom. These structures are similar to those 
observed in rotating Binard convection experiments over a flat bottom (Boubnov 
& Golitsyn 1986; Chen, Fernando & Boyer 1989; Fernando, Chen & Boyer 1991). 
Without topography, downwelling in cyclonic vortices is surrounded by anticyclonic 
upwelling motions. However, with the addition of topography as in figure 3, upwelling 
occurs in adjacent deeper regions where it generates the azimuthal jets. 
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FIGURE 3. A streak photograph of surface particles in the large insulated bowl (figure 2a) containing 
water cooled from above. The fluid radius was r ,  = 23 cm at the free surface and the maximum 
fluid depth was 11 cm. The rotation rate corresponded to f = 1.4 s-' and the temperature difference 
between the air and water was 12°C. 

The flows described in this study have some features in common with those 
produced by imposing radial temperature gradients along horizontal boundaries. 
Koschmieder & Lewis (1986) observed Hadley circulations over a rotating plate with 
radial temperature gradients and an isothermal lid. Some experiments were conducted 
with unstable vertical gradients, but were restricted to relatively low rotation rates. 
Miller & Fowlis (1986) and Hathaway & Fowlis (1986) imposed gradients along both 
the top and bottom boundaries, over a wider parameter range including unstable 
vertical gradients. One obvious difference in our study is the use of topography 
to generate the horizontal temperature gradients. However, an equally important 
variation is the use here of a free surface. In the previous studies most of the radial 
heat transfer was concentrated within Ekman boundary layers and extended over the 
full radius of the container, whereas our surface flow is predominantly inertial so that 
the internal dynamics determine both the width of the cells and the heat flux through 
the free surface. While such a system allows fewer parameters to be set externally, 
it should be more relevant to meteorological and oceanographic phenomena. For 
example, the atmospheric Hadley cell does not extend from equator to pole, but is 
restricted to lower latitudes by its internal dynamics. 

2. The linear inviscid limit 
It is clear from figure 3 that nonlinearity has a significant influence on topographic 

Hadley cells. However, the linear inviscid limit is analytically tractable and will help 
provide physical insight into the more complex laboratory flows. The dynamics of 
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the convective vortices which form the downwelling arm of the topographic Hadley 
cells are turbulent and non-hydrostatic, making theoretical progress beyond linear 
stability analysis particularly difficult (Nakagawa & Frenzen 1955; Chandrasekhar 
1961). We will therefore treat this part of the flow as a conduit removing cooled fluid 
from the top of the cell and returning it near the base (figure 1). In contrast, the 
jet regions are less thermodynamically active and are likely to be near hydrostatic 
balance. Nonlinearity can also be neglected if the Rossby number satisfies 

where u is the azimuthal jet velocity, Ar is the jet width and f is the Coriolis parameter 
which in the laboratory is equal to twice the rotation rate. Similarly, if the Ekman 
number satisfies 

E k  = - 4 1, 
f H 2  

where v is the kinematic viscosity and H is the fluid depth, then dissipation will 
be small outside the bottom Ekman layer. Under these conditions the jets will 
be dominated by a geostrophic balance in the cross-stream direction, so that the 
thermal wind relation holds (Pedlosky 1987, pp. 4246). The final assumption is 
that the surface flow is inviscid so that its angular momentum is conserved. These 
assumptions are similar to those utilized in the atmospheric Hadley cell solution of 
Held & Hou (1980). They will now be utilized in a theory which predicts the Eree 
surface velocity distribution, the depth-averaged density distribution and the size of 
the hydrostatic region of an idealized linear inviscid cell. 

Consider the hydrostatic region of the cell in figure 1, with no gradients in the 
azimuthal direction. The cross-isobath ( r )  momentum balance is geostrophic, 

V 
(2.2) 

1 a P  - f u  = _ _ _  
Po dr’ 

while the vertical ( z )  momentum equation for hydrostatic Bousinesq flow is 

Here, p ( r ,  z )  is the pressure, p ( r ,  z )  is the density with a mean value p,,, and g is the 
gravitational acceleration. 

The specific angular momentum of fluid particles is defined by 

M = i f r 2  + ur. (2.5) 

If the cell extends radially from r = rl to r = r2,  then conservation of M implies 
immediately that the surface velocity is 

This constraint does not apply to the bottom boundary z = -zB(r) ,  where we assume 

u(r,  - z B )  4 u(r, 0). (2.7) 

The surface velocity is plotted as a function of position in figure 4. Warm fluid 
surfaces at r = r1, then accelerates with the shallows to its left until it sinks at r = r2 
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FIGURE 4. Non-dimensional zonal velocity and depth-averaged density anomaly as a function of 
cross-cell coordinate. The fluid depth decreases with increasing r and the theoretical curves only 
apply over the width of the hydrostatic region of each cell (to be determined). 

where the maximum azimuthal speed is 

with Ar = r2 - r l .  Beyond r2, equation (2.6) no longer applies and in the inviscid 
limit the velocity can be assumed to drop discontinuously to zero. However, a fluid of 
finite viscosity clearly cannot support an infinite shear. Since Rossby numbers based 
on u,,, can approach unity, it is likely that the shear will be reduced by nonlinear 
momentum fluxes which would tend to broaden and flatten the velocity profile. While 
these effects cannot be included in the analytical theory, they will be investigated in 
the laboratory component of the study. 

Eliminating the pressure term from (2.3) and (2.4) to produce the thermal wind 
equation, then integrating from the bottom z = - zB(r)  to the free surface z = 0, 
yields 

where g is the gravitational acceleration, H is the characteristic depth of the cell and 
the non-dimensional depth-averaged density distribution is defined by 

o(r) = - s” pdz. 
POH -28 

(2.10) 

Since po is the mean density of the cell, 

1’; odr = Ar. (2.11) 

Utilizing boundary conditions (2.6) and (2.7) in relation (2.9), then integrating from 
r1 to r yields an expression for the depth-averaged density distribution, 

(2.12) 
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where F1 = f2r:/gn is a Froude number based on r l .  The density distribution is 
plotted as a function of position in figure 4. The density increases with decreasing r 
until sinking occurs at a critical density cr(r2). If the density change across the cell is 
defined as Acr = cr(r2) - cr(rl), then equation (2.12) gives, 

Acr = { (g)2 -2111 (1 + g)  +2q:), 

where we have substituted r2 = rl + Ar. The power series expansion 

In 1 + -  - -  1-- -+0 - , ( ::) -f:{ ;:: ( : 2 ) }  

when substituted into (2.13) yields 

(2.13) 

(2.14) 

(2.15) 

for Ar*/rf B 1. If Ar2 / r :  + 1, the first term on the right-hand side of (2.13) dominates 
and the jet width is larger than (2.15) by a factor of J2. 

To close the problem, Acr must now be related to external variables. This can be 
achieved by equating the vertical heat flux through the water with that through the 
air above it. In each of these fluids the vertical heat flux Q obeys 

(2.16) 

(Turner 1973, pp. 219--224), where AT is the change in temperature across the layer 
(concentrated in the thermal boundary layer), k is the thermal conductivity of the 
medium and evaporative cooling has been neglected. The Rayleigh number (assumed 
to be large) is defined by 

gaATH3 
Ra = 1 

KV 
(2.17) 

where c( is the coefficient of thermal expansion, IC is the thermal diffusivity and v is 
the kinematic viscosity. For cooling at a free surface, the vertical heat flux through 
the water must equate with that through the air above it. It then follows from (2.16) 
that the ratio of the temperature change across the water to that across the air is 

y = { ( ; ) 3 1 i l r J  1/4 , 

EK’V’ 
(2.18) 

where primed quantities refer to the properties of air and unprimed to the properties 
of water. Over the experimental parameter range y = 0.03, implying that nearly 
all the temperature drop is across the air thermal boundary layer. The drop across 
the water can then be approximated by yAT, where AT now denotes the total 
temperature difference between the air and water. Since the convective overturning 
timescales for the cell are much shorter than diffusive timescales, the vertical and 
horizontal temperature changes across the cell should be very similar. A reasonable 
approximation for the density change across the cell is therefore 

Acr = yaAT. (2.19) 

With y = 0.03, the change in temperature across the cell is only a few percent of AT. 
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It then follows from (2.16) and (2.17) that horizontal gradients in Q will also be very 
small. 

Substituting (2.19) into (2.15) gives width scales of 

Ar = (2y)‘I‘R (Ar2 4 r:) (2.20) 

and 

where 
Ar = 2y’I2R (Ar2  + r:) ,  

(gold T H)lI2 

f 
R =  

(2.21) 

(2.22) 

is a deformation radius based on external parameters. Since Ar + r1 implies Ar w r2, 

relation (2.8) provides corresponding scales for the maximum surface speed, 

(2.23) u m a x  = ( 2 ~ )  112 f R ( Ar2 4 r:) 

and 
u m a x  = Y ‘ 1 2  f R (Ar2  + r f ) .  (2.24) 

Scales (2.21) and (2.24) break down for very broad jets in which Ar approaches the 
container radius ro. Validity of the theory is therefore restricted to the regime 

2 
(2.25) I0 Fr = - + 1, 

R2 
where Fr is a Froude number. 

It is interesting to note that the theoretical results do not depend directly on the 
details of the topography. The only requirement is that the bottom slope is large 
enough to generate the required cross-slope temperature gradients in the fluid (see 
the Appendix). Similar results would therefore be obtained if the same gradients 
could be applied by other methods. However, it is essential that the upper boundary 
be a free surface. Limitation of the cell width to the deformation radius scale 
is a direct consequence of angular momentum conservation of the near surface 
flow. Introduction of a solid upper boundary, as in the laboratory experiments of 
Koschmieder & Lewis (1986), Miller & Fowlis (1986) and Hathaway & Fowlis (1986), 
enhances dissipation and breaks the angular momentum constraint. In the extreme 
case where the Ekman layer carries all of the radial transport VE, the cell will extend 
over the full width of the container and the azimuthal velocity will scale as 

u - V E ( f / V ) ” 2  (2.26) 

(Pedlosky 1987, p. 192). 

3. Laboratory results 
Two experimental configurations were used to study topographic Hadley cells. 

The simplest consisted of an insulated perspex bowl mounted on a rotating table 
(figure 2a). This was filled with water ranging from 10 to 35°C above the laboratory 
temperature which was fixed at 20°C. Cooling at the free surface then forced a 
convective flow in the bowl. Since there was no heating, this flow was inherently 
unsteady. However, the convective overturning timescale was always much less than 
the cooling timescale, so that the flow could be regarded as quasi-steady. In the second 
series of experiments, a rotating aluminium bowl containing the fluid was heated from 
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below by a thermostatically controlled electric element attached to the bottom of the 
bowl (figure 2h). This was balanced by cooling at the free surface, so that a steady 
mean state could be established in these runs. Under these circumstances, AT was 
defined as twice the mean temperature difference between the air and water. The 
heating element was restricted to the deepest part of the bowl, so that the heat flux 
distribution would enhance the radial gradients generated by the topography. The 
experiments seem to confirm that it is the magnitude of the forcing rather than its 
detailed spatial structure which determines the flow patterns in this configuration. 

In both series of experiments, the free surface flow was visualized using floating 
aluminium powder or polystyrene beads. Streak photographs and video recordings 
then provided information on the general flow patterns and the surface velocity field. 
The temperature structure was also measured by traversing fast response thermistors 
both vertically and horizontally through the flow. A small number of experiments 
involved cooling through a solid upper boundary and in these cases, interior velocity 
measurements were made using a laser Doppler velocimeter (LDV). 

The important parameters which characterize the rotating bowl experiments are f ,  
A T ,  v, K ,  H and To, where the last two quantities can be interpreted as the depth at 
the bowl centre and the radius where the depth goes to zero (figure 2). The system 
can therefore be defined in terms of four non-dimensional parameters (Ra, Fr, Ek 
and say a Prandtl number, Pr = v/ic). However, since all of the current experiments 
utilized pure water, v and K are essentially constant and it is only necessary to 
specify two parameters (say Ra and Fr) .  All of the experiments described below 
were characterized by large Rayleigh numbers (Ra - lo8), small Ekman numbers 
( E k  - lop5 - and small Rossby numbers (Ro  - lo-'). While this is generally 
consistent with the assumptions of the linear inviscid theory, Rossby numbers based 
on umu, were measured as high as 0.25 and probably would have exceeded this if not 
constrained by nonlinear momentum fluxes. The linear theory should therefore be 
regarded only as a limiting case. 

3.1. Surface pow 
The characteristics of the flow at the free surface were determined from photographic 
images and video recordings. Examples of streak photographs covering a range of 
conditions are shown in figure 5. They reveal strong azimuthal jets which narrowed 
and became more unstable as Fr increased, until multiple jets formed when Fr N lo2. 
These types of images were used to measure the radial width of the azimuthal jets 
and their associated wave motions. Streak lengths and particle tracings from video 
recordings also provided quantitative information on the surface velocity field. Surface 
flow patterns were most clearly defined by video recordings of relatively wide jets. 
These revealed that slowly moving particles were first entrained on the deeper side of 
the jet. They were then accelerated azimuthally, while slowly migrating radially across 
the jet. After reaching a peak velocity, particles decelerated until they escaped from the 
shallow side of the jet where they were often entrained by cyclonic vorticies. Particles 
typically remained within the jet for between one and three rotation periods. The 
acceleration phase is qualitatively consistent with the angular momentum conserving 
flow analysed in $2. However, the deceleration phase is more likely to be controlled 
by nonlinear cross-stream momentum fluxes as detailed below. 

The surface velocity field was complicated by cyclonic vorticies and instability 
of the jets. However, the structure could be resolved within relatively broad jets. 
An example of measurements taken from a video recording of floating aluminium 
particles is shown in figure 6, along with the linear inviscid limit. Both are non- 
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FIGURE 5. Streak photographs of flows driven by both bottom heating and surface cooling. The 
bowl dimensions are given in figure 2h. ( a )  f = 0.5 s-l, Ra = 2.0 x lo8 and Fr = 1.5. (b)  f = 1.0 
s-I, Ra = 3.8 x lo8 and Fr = 3.2. ( c )  f = 2.0 s-', Ra = 2.8 x lo8 and Fr = 16.8. ( d )  f = 5.0 s-I, 
Ra = 3.4 x lo8 and Fr = 78. Vertical heat fluxes, based on relation (2.16) and constants given in 
Turner (1973), ranged from 0.7 Wcm-2 for ( a )  to 1.6 Wcm-2 for (b) .  

dimensionalized by the wave speed f R to give a Rossby number in accordance with 
the linear scaling (2.23). Initially the observed surface speed increases only marginally 
more slowly than the angular momentum conserving limit, but then falls off rapidly 
about midway across the jet. The small Ekman numbers associated with these flows 
indicate that molecular diffusion is not responsible for the observed flattening of 
the profile. A more likely candidate is the nonlinearity evident in figures 3 and 5. 
Cross-stream fluxes associated with nonlinear waves would reduce the acceleration 
on the deeper (anticyclonic) side of the jet and diffuse this momentum toward the 
shallow (cyclonic) side. 
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FIGURE 6. Radial distribution of non-dimensional azimuthal velocity for a flow heated from below 
with f = 1.0 SC', Ra = 3.8 x lo8 and Fr = 3.2 (0). This is compared with the linear limit assuming 
r l / R  = 0.3 (solid curve). In the absence of viscosity this limit would have infinite shear on the 
shallow side of the jet. 

0 5 10 15 20 
r,/R 

FIGURE 7. Non-dimensional cell width as a function of basin radius in units of R (i.e. Fr'''). Results 
are presented for all the configurations described in figure 2.  The symbols correspond to the large 
insulated bowl (x), the small insulated bowl ( 0 )  and the small bowl with bottom heating (0). 

While the detailed velocity structure is difficult to resolve in the more unstable jets, 
related flow characteristics such as the total jet width and maximum velocity could be 
determined over a wide parameter range. Streak photographs were used to take width 
measurements at eight evenly spaced locations along the jet circumference. Along any 
given radius, Ar was defined as the width of the zone of coherent azimuthal streaks, 
usually bounded by vorticies on either side. The mean width and its standard deviation 
are plotted for a range of conditions in figure 7. They have been non-dimensionalized 
by the deformation radius R in accordance with the linear scaling (2.20). The plot 
indicates that the cell width scales with R over most of the parameter range. This 
only breaks down when Fr < 1 and the width of the cell is influenced by the finite 
size of the bowl. The mean non-dimensional width of jets was A r / R  = 1.01, which is 
considerably larger than the corresponding linear inviscid estimates of ( 2 ~ ) ' / ~  = 0.24 
for narrow jets (equation (2.20)) and 2y1l2 = 0.35 for broad jets (equation (2.21)). 
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FIGURE 8. Non-dimensional maximum jet velocity as a function of basin radius in units of R (i.e. 
Fr' /*) .  The symbols correspond to the small insulated bowl ( 0 )  and the small bowl with bottom 
heating (0). 

This indicates that the broadening evident in figure 6 persists throughout the higher 
Froude number range. 

Azimuthal speeds of the most rapidly moving particles in the jets could be best 
determined from video images. They are are plotted for a range of parameters in 
figure 8. Over most of this range the maximum non-dimensional speeds are marginally 
less than the linear estimate of ( 2 ~ ) " ~  = 0.24 (equation (2.23)). The slightly higher 
speeds near r,/R = 1 may be associated with the confinement of the bowl, which 
tends to suppress jet meanders and thus limit nonlinear fluxes. These results are again 
consistent with figure 6 and in combination with the total width measurements point 
to a significant nonlinear contribution for all Fr 9 1. 

The results of this section indicate that the linear limit provides an adequate 
description of the deeper (anticyclonic) side of the jet, while the shallower (cyclonic) 
side is dominated by nonlinear momentum fluxes. As a result, the total width scales 
very closely with the deformation radius R, without increasing the Rossby number 
beyond the linear limit of ( 2 ~ ) ' / ~ .  This is consistent with the numerical Hadley cell 
solutions of Schneider (1984), which suggest that nonlinear fluxes constrain Hadley cell 
jet velocities. Although we cannot measure these fluxes directly, figures 3 and 5 clearly 
demonstate that large-amplitude waves strongly perturb the jet motions. Experience 
suggests that this would be associated with substantial cross-stream diffusion of the 
jet's momentum. 

Large-amplitude waves were first evident when Fr NN 2 and became progressively 
more nonlinear as Fr increased. While some of the jet distortions were associated with 
the downwelling vorticies, more coherent wave forms are also evident. If these were 
due to baroclinic shear instability, then the wavenumber should scale with R-'. This 
corresponds to a mode number (i.e. number of wave forms around the circumference 
of the jet) of r2/R = ( r2 /ro)Fr' l2 .  Reference to figure 5 (and other images not shown) 
confirms that this scaling agrees closely with experiment. This finding is consistent 
with the idea that the wave motions are responsible for the broadening of the jets. In 
particular, baroclinic instability operates by releasing the potential energy associated 
with the density field of the geostrophic flow and thus tends to induce cross-stream 
spreading. 
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3.2. Temperature field 

Vertical and radial temperature profiles were recorded using a thermistor mounted 
on a traversing mechanism on the rotating table. Figure 9 shows examples of vertical 
profiles recorded near the mid radius of the bowl, with and without bottom heating. 
Temperature deviations from the mean have been non-dimensionalized in accordance 
with equation (2.19). This scaling is supported when AT is taken to be the mean 
temperature difference between the air and water for insulated flows and twice this 
figure for bottom heated flows which have two thermal boundary layers. Some of 
the temperature structure is associated with highly transient features; however, there 
are consistent underlying characteristics. All flows have an unstable near surface 
zone (superadiabatic), overlying a nearly neutral zone (adiabatic), and a deep stable 
zone (subadiabatic). At low rotation rates, nearly adiabatic conditions predominate. 
However, the depth of the superadiabatic and subadiabatic zones increases with J’. 
Anomalously cold bottom water wzis only present when there was no bottom heating. 
Transient plumes can be identified by large temperature extremas in the fluid interior 
(figure 9b, profile ii). These were often encountered when profiles coincided with the 
non-hydrostatic region between two jets. 

Figure 10 shows examples of horizontal temperature profiles for flows heated from 
below. Readings were taken across the diameter of the bowl at four depths. The depth 
dependence is consistent with the trends revealed by the vertical profiles. Within the 
horizontal structure, a high-wavenumber component is evident particularly near the 
surface where convective vortices were strongest. However, most of the structure 
in these and other profiles (not shown) scales with the deformation radius R. An 
individual cell can be identified by a drop in temperature with radius over this 
scale. The total drop across the bowl therefore increases with the number of cells 
present. A single cell fills most of the bowl in figure 10(a), while at least two cells 
are evident in figure 10(b). The profiles also confirm that the temperature drop 
across each cell scales as y A T .  This provides further support that broadening of 
the cells beyond the linear limit is associated with wave processes, rather than any 
significant underestimation of the internal temperature differences (due for example 
to evaporative cooling). 

The horizontal temperature structure within individual cells can be compared with 
the linear limit shown in figure 4. Since the horizontal temperature profiles at different 
depths were recorded sequentially rather than simultaneously, flow variability does not 
allow an accurate estimate of the depth-averaged temperature distribution. However, 
the radial gradients are quite consistent between profiles recorded away from the 
surface and bottom forcing, so reasonable comparisons can be made with individual 
profiles. Figure 11 shows the detailed temperature values over the width of cells from 
figure 10. These are compared with non-dimensionalized profiles calculated from 
linear theory (equation (2.12)). As with the surface velocity field, there is reasonable 
agreement on the deeper (anticyclonic) side of the cell. However, the nonlinear 
processes which transport momentum across the jets also carry heat and thereby 
weaken the temperature gradients on the shallow side. 

In summary, the temperature data tend to support the general picture revealed by 
the surface flow field. That is, the velocity and density fields are governed mainly by 
linear angular momentum conserving dynamics on the deeper side of the jet. However, 
the shear on the shallow side is limited by baroclinic instability which drives nonlinear 
fluxes of momentum and heat. The net effect is a substantial broadening of the flow 
with corresponding reductions in the cross-stream velocity and temperature gradients. 
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FIGURE 9. Vertical temperature profiles recorded at r / r ,  = 0.44 in the two small bowls. T,, is the 
mean water temperature in the bowl. ( a )  Flows insulated below with (i) f = 0.5 s-', Ra = 9.8 x lo7 
and F r  = 2.0; (ii) f = 2.0 s-', Ra = 8.0 x lo7 and F r  = 36.0; (iii) f = 4.0 s-', Ra = 8.2 x lo7 and 
F r  = 146. ( b )  Flows heated from below with (i) f = 0.5 s-', Ra = 2.8 x 10' and F r  = 0.61; (ii) f = 
2.0 s-l, Ra = 2.8 x 10' and F r  = 14.1; (iii) f = 4.0 s-', Ra = 3.0 x 10' and F r  = 37.0. 

3.3. The influence of a solid upper boundary 

While the focus of the study is on free surface flows, a small number of experiments 
were conducted with a solid upper boundary for comparison. An example of the 
radial distribution of azimuthal velocity, recorded a few centimetres below the upper 
boundary using an LDV, is shown in figure 12. This reveals a single cell at least 
4R in width which fills most of the bowl. Motions near the outer edge of the bowl 
correspond to the lower part of the convection cell and are therefore expected to be in 
the opposing direction. Maximum non-dimensional velocities were typically an order 
of magnitude less than those recorded during free surface experiments. The slowing 
and broadening of the jet is consistent with the idea that much of the cross-isobath 
transport was carried in the Ekman layer. According to relation (2.26), the velocities 
in figure 12 correspond to a transport of 0(10-6m2s-') within an Ekman layer of 
depth O(lOP3m). The contrast between this and the free surface experiments clearly 
demonstrates the importance of the upper boundary condition. 
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FIGURE 10. Horizontal temperature profiles at a number of depths for flows heated from below. T,, 
is the mean water temperature in the bowl. (a) A single cell fills most of the bowl with f = 0.5 SKI, 

Ra = 1.7 x 10' and Fr = 0.60. (b)  Multiple cells with f = 4.0 s-', Ra = 1.7 x lo8 and Fr = 39.6. 

3.4. Flows with blocked isobaths 
In the axisymmetric bowl experiments all isobathic contours formed closed paths. In 
order to investigate the influence of blocked contours, a small number of experiments 
were also conducted in a rectangular container with a sloping bottom in one half. This 
system was rotated and cooled at the free surface, while the surface flow was again 
visualized using aluminium powder. A photograph of one of these flows is shown in 
figure 13. As expected, convective vorticies dominate the region where the bottom is 
flat. However, over the slope a topographic Hadley cell and its associated jet form 
parallel to the isobaths. This flow responds to blocking at the vertical boundaries by 
forming boundary currents which follow the perimeter of the container and close the 
horizontal circulation. The most intense boundary current flows toward the shallows. 
This is due to the propagation of energy in this direction by topographic Rossby 
waves over the slope. 

This experiment also contrasts the different lengthscales associated with convective 
vortices and the eddies generated by baroclinic instability of mean horizontal flows. 
It has already been noted that convectively driven cyclonic vorticies dominate the flat 
bottomed region. However, much larger eddies with either cyclonic or anticyclonic 
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FIGURE 11. Detailed temperature data across individual laboratory cells. The data points are from 
the right (0) and mirror imaged from the left ( x )  of the z / H  = -0.30 profiles in figure 10. They 
are compared with theoretical profiles (solid curve) based on the linear limit with r l / R  = 0.035 and 
q / R  = 2.1. 
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FIGURE 12. Radial distribution of non-dimensional azimuthal velocity for the flow beneath a rigid 
lid in the large insulated bowl with f = 1.0 s-', Ra = 5.1 x lo7 and Fr = 30.3. Stationary readings 
were taken 3 cm below the lid over a 200 s period with a maximum sampling frequency of 15 s-l. 

Mean values and one standard deviation in the natural variation of the signal are shown in the 

-0.02 

plot. 

vorticity are also evident in figure 13. These develop from shear instabilities on both 
the Hadley cell jet and the boundary currents. The large amplitude of these waves 
compared to the axisymmetric flows suggests that reflection of energy at the blocked 
contours may have enhanced the wave growth. 



364 S .  A .  Condie and P. B. Rhines 

FIGURE 13. A streak photograph of surface cooled flow in a retangular tank (50 cm x 30 cm). The 
fluid depth was uniform ( H  = 15 cm) over the left-hand half of the tank, then decreased linearly 
to zero at the right-hand wall. The rotation rate corresponded to ,f = 2.0 s-' and the temperature 
difference between the air and water was 13°C. 

4. Potential applications 
The laboratory model may provide a useful analogue for a number of geophysical 

and astrophysical systems. In some of these systems, horizontal temperature gradients 
are generated by non-uniform heating rather than by topography. However, as noted 
in $2, the essential features of the convection cell dynamics should be similar. 

4.1. Coastal seas 

Topographic Hadley cells may be important in continental shelf and slope seas, where 
surface cooling or evaporation drive convective overturning. They may be generated 
by either a sloping seafloor or non-uniform sea-surface buoyancy fluxes. Over a shelf 
region with typical parameters f = s-l, H = 100 m and An = lop3, equations 
(2.8) and (2.15) predict a maximum jet speed of 1.4 ms-l and a cell width of 14 km. 
However, since nonlinear effects are also likely to influence coastal flows, these two 
figures should be regarded as upper and lower limits respectively. 

In the northern hemisphere, surface jets associated with topographic Hadley cells 
would keep the coast to their left when looking in the downstream direction. They 
should therefore be easily distinguishable from surface flows driven by along-shelf 
density gradients, which keep the coast to their right. However, the structure of the 
cells may be complicated by wind stress, which often accompanies strong surface 
cooling. Opposing (downwelling) winds would tend to slow and broaden the surface 
jet as the cross-isobath transport is taken up by the wind-driven Ekman layer. In 
contrast, upwelling winds (same direction as the jet) generate Ekman transport which 
opposes the cross-isobath Hadley cell motion. This would result in narrow faster 
surface jets. 
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4.2. Atmospheric Hadley cells 
A less direct analogy can also be drawn with large-scale convective motions in 
terrestrial and planetary atmospheres. In this role, the model topography is a 
convenient method for establishing radial temperature gradients. It also constrains 
barotropic radial motions and thus in a limited way provides an analogue for the 
planetary vorticity gradient. Topographic Hadley cells and their associated surface 
jets appear to be closely related to the atmospheric Hadley cells and the jet stream. 
The assumptions used in our theory are similar to those used in recent atmospheric 
models (Held & Hou 1980; Lindzen & Hou 1988) and the resulting flow patterns 
have many features in common. In particular, both flows are characterized by a 
non-hydrostatic convective region, which drives a relatively narrow hydrostatic jet 
along which baroclinic instabilities develop. 

The analogy is of course limited by a number of factors. For example, radiative 
cooling is distributed over the full depth of the atmosphere and the latitudinal heating 
profile at the Earth’s surface may be quite different from the corresponding radial 
laboratory profile. On the other hand, similarities between flows with and without 
bottom heating suggest that the main features of the flow are mainly determined 
by gross parameters such as the total available temperature differential. Perhaps a 
more important difference is the presence of first-order variations in the planetary 
vorticity over the width of the atmospheric Hadley cell. In particular, the topographic 
constraint in the laboratory model tends to be diminished by stratification and there 
is no means of including an equatorial region. 

Despite these limitations, it can be argued that in many respects the model is more 
relevant to atmospheric Hadley cells than previous laboratory models, which utilized a 
solid upper boundary (Koschmieder & Lewis 1986; Miller & Fowlis 1986; Hathaway 
& Fowlis 1986). Most of the radial heat flux in these studies was concentrated within 
Ekman layers. Dissipation then allowed the convection cells to spread over the full 
radius of the container. The outer spherical boundary in the space-laboratory model 
of Hart, Glatzmaier & Toomre (1986) may have been similarly responsible for the 
equator to pole cells observed with meridional heating gradients. In contrast to these 
studies, the cell width in both our experiments and the real atmosphere is limited by 
the tendency to conserve angular momentum. 

4.3. Planetary atmospheres 
The absence of a planetary vorticity gradient in the model is perhaps less critical 
when applied to the atmospheres of the giant outer planets (Condie & Rhines 1994). 
The zonal jets on Jupiter and Saturn cover relatively narrow bands of latitude, the 
majority of which are outside the equatorial region. While there is still no concensus 
on the detailed dynamics of these flows, it is clear that the major driving force is the 
planets’ interior heat (Pirraglia 1984). 

The atmospheric interior of these planets can be divided into a subadiabatic region, 
extending from the cloud tops up to the tropopause, and a deeper convective region. 
Previous laboratory and numerical models have tended to focus on the subadiabatic 
region where quasi-geostrophic scaling may be applied (Read & Hide 1984; Read 
1986; Sommeria, Meyers & Swinney 1988; Marcus 1988). Velocities in this region 
decrease with altitude, suggesting that they are driven by momentum transfer from 
the convectively driven jets below (Ingersoll et al. 1984). Flasar (1986) noted that the 
velocity distribution at the top of these jets can be reproduced by angular momentum 
conserving transport from lower to higher latitudes, followed by dissipation which 
reduces M to its local planetary value. This suggests that the flow may consist of 



366 S.  A.  Condie and P. B. Rhines 

a series of convectively driven Hadley cells, with dissipation occurring in the strong 
upwelling (or downwelling) zones at the outer edges of the cells. 

The major uncertainty in applying the model results is the penetration depth of the 
convection cells (Condie & Rhines 1994). Large depths comparable to the jet widths 
result in columnar convection patterns as first suggested by Busse (1976). However, 
the model provides realistic estimates of observable quantities when shallower depths, 
comparable to the scale height O( 100 km) are assumed. For example, utilizing a value 
of AoH = 1.2 km for Jupiter (Ingersoll & Cuzzi 1969), yields a cell width of O( lo4 
km) and a maximum jet velocity of O( lo2 m s-’). 

5. Conclusion 
Topographic Hadley cells have been analysed in the linear limit under assumptions 

of hydrostatic flow, geostrophy and inviscid surface flow which conserves angular 
momentum. This yields the following scales for the width and maximum azimuthal 
velocity of the hydrostatic region of the cell: 

Ar = cly’12R, (5.1) 

Umax = C2y‘/2fR, (5-2) 
where CI and c2 are dimensionless constants. In the linear limit c1 = c2 = J2 for jets 
which are narrow compared with their path radius, while c1 = 2 and c2 = 1 for jets in 
which these two quantities are comparable. The laboratory experiments yield similar 
temperature and velocity profiles on the deep side of the jets. However, these flows 
are baroclinically unstable and large-amplitude meanders broaden the jets and reduce 
the shear, particularly on the shallow side. This observation is consistent with related 
numerical solutions (Schneider 1984; Held & Hou 1980). The broadening trend is 
most prevalent in experiments characterized by large Froude numbers, where wave 
growth is not impeded by the proximity of the outer boundary of the bowl. However, 
even under these circumstances the total width of the jets continues to scale with the 
deformation radius with constants of c1 = 5.8 & 1.2 and c2 = 0.92 f 0.11. 

S.A.C. was supported by a fellowship from the University Corporation for Atmo- 
spheric Research (UCAR). A number of the laboratory experiments were conducted 
at the Australian National University. 

Appendix. Conditions for cell generation 
To understand the conditions under which topographic Hadley cells might develop, 

consider again the system shown in figure 1. With no along-isobath gradients, the 
depth-averaged heat equation can be written 

dT d - a2T Q 
- + -(urT) = IC- - - 
a t  ar ar2 pcpH’  

where cp is the specific heat, ur is the radial velocity and u,T is the depth-averaged 
radial heat transport associated with the Hadley cell. The radial transport associated 
with turbulent processes, such as convective vortices, is conveniently characterized by 
a diffusivity IC. If there is no Hadley cell we can write 
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where the subscripts refer to any two radii. If the flow is quasi-steady so that TI - T2 
is independent of time, we are left with a balance between surface cooling and 
horizontal diffusion. However, if the heat flux term exceeds the diffusion term, then 
the advective term must make a contribution through the formation of a Hadley cell. 
The condition for cell formation can therefore be written in scaled form as 

where p = (H1 - H2)/Ar is the characteristic slope of the topography. Substituting 
(2.19)-(2.22) this becomes 

This result has little predictive power since the use of simple diffusion may not be 
appropriate and K is in any case poorly constrained. However, its functional form 
provides insight into the influence of the various parameters. In particular, a cell is 
unlikely to form in a very deep region or where the slope is very gentle. In both cases, 
significant horizontal temperature gradients cannot develop from uniform surface 
cooling. Another interesting aspect is that rotation tends to inhibit cell formation by 
restricting the cross-slope distance over which the required horizontal temperature 
difference must develop. 
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